Sunday, February 23, 2025

Mirrors

 Spherical Reflection Mirrors, Off-Axis Parabolic Mirrors, Plano Mirrors With High Reflection Coating

 

Optical Mirrors are designed to reflect light for a variety of applications, including beam steering, interferometry, imaging, or illumination. Optical Mirrors are used in a wide range of industries, such as life sciences, astronomy, metrology, semiconductor, or solar.

 

Hyperion Optics offers a range of laser, flat, metal substrate, focusing, or specialty Optical Mirror in a multitude of reflective coating options, including Protected Aluminum, Enhanced Aluminum, Protected Silver, Protected Gold, or Dielectric. Choosing the proper reflective coating option ensures high reflectivity of the needed wavelength or wavelength range. Optical Mirrors designed for laser applications are optimized for the given laser wavelength. Additionally, mirrors optics designed for lasers feature damage thresholds that are suitable for the designated laser. Metal substrate Optical Mirrors are ideal for applications requiring a constant coefficient of thermal expansion between the Optical Mirror and the mount. Optical Mirrors with a concave surface are ideal for light focusing applications.

 

Optical mirrors have a smooth, highly-polished, plane or curved surface for reflecting light. Usually, the reflecting surface is a thin coating of silver, or aluminum on glass. Product specifications for optical mirrors include diameter, radius of curvature, thickness focal length, and surface quality. The diameter or height of an optical mirror is measured straight on. If the optical mirrors curvature was extrapolated into a sphere, then the radius of that sphere is the radius of curvature for the mirror. There are two thickness measurements for optical mirrors: center thickness and edge thickness. Units of measure include inches, feet, and yards; nanometers, centimeters, and millimeters, and miles and kilometers. With optical mirrors, focal length is the distance from the mirror at which light converges. Surface quality describes digs and scratches. A dig is a defect on a polished optical surface that is nearly equal in terms of length and width. A scratch is a defect whose length is many times its width.

 

Optical mirrors are made from many different materials, each of which influences the mirrors reflectivity characteristics. Choices for materials include borosilicate glass, copper, fused silica, nickel, and optic crown glass. Borosilicate glass is also known as BK7 and boro-crown glass. Copper is used in high-power applications because of its high thermal conductivity. Fused silica has a very low coefficient of thermal expansion and is suitable for use with moderately-powered lasers or changing environmental conditions. Ultraviolet (UV) grade optical mirrors are also commonly available. Nickel is used in applications which require resistance to both thermal and physical damage. Proprietary materials for optical mirrors include Pyrex (Corning Inc.) and Zerodur (Schott Glaswerke).

 

Optical mirrors are sometimes coated to enhance their reflectivity. Choices include bare, enhanced, and protected aluminum; silver, bare gold and protected gold; and coatings made from rhodium and dielectric materials. Enhanced aluminum coatings are used to improve reflectance in the visible and ultraviolet regions. Protected aluminum coatings provide abrasion resistance while protecting the surface of the aluminum, an excellent reflector in the upper UV, visible and near-infrared (IR) regions. Optical mirrors with bare gold and protected gold coatings are used in the near-IR to far-IR regions. Silver coatings provide better reflectance than aluminum; however, silvers tendency to oxidize and tarnish requires thorough sealing from the atmosphere. Rhodium coatings have a reflectivity of approximately 80% of the visible spectrum.

 

For more information about hyp design, please feel free to contact us!




Protective Windows

 Protective Windows is applied to isolate different physical environments while allowing light to pass through. When selecting windows, please consider the material, transmission, scattering, wave front distortion, parallelism and resistance to certain environment. We offer all kinds of windows, which are made from different materials.

 

Single layer, multiplayer anti-reflecting coatings on optical windows are also available upon request.

 

Specifications

 

Diameter Tolerance: +0.0, -0.2 mm

 

Thickness Tolerance: ±0.2mm

 

Clear Aperture: >80%

 

Parallelism: <3 arc min

 

Surface Quality: 40-20 scratch & dig

 

Flatness λ /2 @632.8nm per 25mmDia

 

ZnSe Rectangle Window

Part No.

Material

Diameter (mm)

Thickness (mm)

Wavelength(nm)

15X18X1

ZnSe

15*18

1.0

10600

31.75X31.75X4

ZnSe

31.75*31.75

4.0

10600

65X85X3-633

ZnSe

65*85

3.0

10600

90X60X3

ZnSe

90*60

3.0

10600

150X105X3

ZnSe

150*105

3.0

10600

185X125X6

ZnSe

185*125

6.0

10600

ZnSe Round Window

 

Part No.

Material

Diameter (mm)

Thickness (mm)

Wavelength(nm)

150-BB

ZnSe

150

5.0

2-12

1.5-3-9.4

ZnSe

38.1

3.0

9400

113-3-9.4

ZnSe

113.0

3.0

9400

0.5-2

ZnSe

12.7

2.0

10600

18-2

ZnSe

18.0

2.0

10600

0.75-3

ZnSe

19.1

3.0

10600

1-3

ZnSe

25.4

3.0

10600

1.1-3

ZnSe

27.9

3.0

10600

30-1.5

ZnSe

30.0

1.5

10600

1.5-3

ZnSe

38.1

3.0

10600

50-3

ZnSe

50.0

3.0

10600

50-4

ZnSe

50.0

4.0

10600

2-5

ZnSe

50.8

5.0

10600

55-3

ZnSe

55.0

3.0

10600

60-3

ZnSe

60.0

3.0

10600

75-3

ZnSe

75.0

3.0

10600

80-3

ZnSe

80.0

3.0

10600

90-3

ZnSe

90.0

3.0

10600

 

 

There are many optical lenses manufacturers, but we are one of the best choices for you.